urban area

Biophysical environment

Submitted by admin on Thu, 06/02/2016 - 18:38
Definition

Normal
0

false
false
false

FR
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Tableau Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:"Calibri","sans-serif";
mso-ansi-language:FR;
mso-fareast-language:EN-US;}

The biophysical environment is the biotic and abiotic surrounding of an organism or population, and consequently includes the factors that have an influence in their survival, development and evolution. The biophysical environment can vary in scale from microscopic to global in extent. It can also be subdivided according to its attributes. Examples include the marine environment, the atmospheric environment and the terrestrial environment. The number of biophysical environments is countless, given that each living organism has its own environment.

Normal
0

false
false
false

FR
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Tableau Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:"Calibri","sans-serif";
mso-ansi-language:FR;
mso-fareast-language:EN-US;}

The symbiosis between the physical environment and the biological life forms within the environment includes all variables that comprise the Earth’s biosphere. The  biophysical  environment  can  be  divided  into  two  categories:  the  natural  environment  and  the built environment with some overlap between the two. Following the industrial revolution the built environment has become an increasingly significant part of the Earth's environment.  The scope of the biophysical environment is all that contained in the biosphere, which is that part of the Earth in which all life occurs.

Normal
0

false
false
false

FR
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Tableau Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:"Calibri","sans-serif";
mso-ansi-language:FR;
mso-fareast-language:EN-US;}

When narrowed down to the aquatic environment, and particularly in the context of the Water Framework Directive, these are often  referred  to  as  water  quality,  water  quantity  and  hydromorphology.  

Mulching

Submitted by admin on Thu, 06/02/2016 - 18:26
Definition

A mulch is a layer of material applied to the surface of an area of soil. Its purpose is any or all of the following:·       to conserve moisture·       to improve the fertility and health of the soil·       to reduce weed growth·       to enhance the visual appeal of the areaMulching as NWRM is using organic material (e.g. bark, wood chips, grape pulp, shell nuts, green waste, leftover crops, compost, manure, straw, dry grass, leaves etc.) to cover the surface of the soil. It may be applied to bare soil, or around existing plants. Mulches of manure or compost will be incorporated naturally into the soil by the activity of worms and other organisms. The process is used both in commercial crop production and in gardening, and when applied correctly can dramatically improve the capacity of soil to store water.

Low Impact Development

Submitted by admin on Fri, 01/15/2016 - 09:48
Definition

LID is a toolbox of site-scale practices that the site designer and developer can utilize to:

  • manage urban rainfall where it occurs for minimized stormwater concentration and runoff
  • potentially lower short-term and long-term development costs
  • improve water quality
  • enhance natural habitat and flood control
  • improve green space aesthetics and potentially increase property values
  • increase community quality of life and livability

There are many practices that are used to support these benefits, including bioretention systems, rain gardens, vegetated rooftops, bioswales, rain barrels, and permeable pavements to name a few. By implementing LID principles and practices, water can be managed in a way that reduces the impact of built areas on the environment while providing numerous additional benefits. (source: LID symposium).

    This concept is very similar to NWRM in the United States context. It is very connected to Green Infrastructure. See also the link to US EPA green infrastructure website.

    Wetlands

    Submitted by h.williams on Wed, 03/04/2015 - 12:04
    Definition

    Areas that are inundated by surface or ground water with frequency sufficient to support a prevalence of vegetative or aquatic life that requires saturated or seasonally saturated soil conditions for growth or reproduction.
    Wetlands provide both stormwater attenuation and treatment, comprising shallow ponds and marshy areas covered in aquatic vegetation.ᅠ Wetlands detain flows for an extended period to allow sediments to settle and to remove contaminants.ᅠ They also provide runoff attenuation and can provide significant ecological benefits.

    Urban Planning

    Submitted by m.futter on Wed, 03/04/2015 - 12:04
    Definition

    Within the framework of natural water retention measures (NWRM), urban planning refers to the application of the "Grey to Green" principle within cities. The specific focus of urban planning for NWRM is to achieve sustainable water management by mimicking natural functions and processes in the urban environment.

    Water retention

    Submitted by admin on Wed, 03/04/2015 - 12:04
    Definition

    Water retention covers a wide set of mechanisms (see synthesis document n°1) the effect of which are to increase the capture of water by aquifers, soil, and aquatic and water dependent ecosystems.
    More precisely it refers to capabilities of catchments (including wetlands, rivers and floodplains but also other land areas) to hold or retain as much water as possible during periods of abundant or even excessive precipitation, so that water is available for use during dry periods and runoff peaks are minimized.

    Wetland (measure)

    Submitted by admin on Wed, 03/04/2015 - 12:04
    Definition

    Wetlands restoration and creation can involve: technical, spatially large-scale measures (including the installation of ditches for rewetting or the cutback of dykes to enable flooding); technical small-scale measures such as clearing trees; as well as changes in land-use and agricultural measures, such as adapting cultivation practices in wetland areas.ᅠ Wetland restoration can improve the hydrological regime of degraded wetlands and generally enhance habitat quality. (Creating artificial or constructed wetlands in urban areas can also contribute to flood attenuation, water quality improvement and habitat and landscape enhancement).
    - Based on Stella definitions, adapted by NWRM project experts and validated by the European Commission

    Sustainable Urban Drainage Systems

    Submitted by m.futter on Wed, 03/04/2015 - 12:04
    Definition

    Sustainable Urban Drainage Systems (or SUDS) are a sequence of water management practices, green infrastructures and measures designed to drain surface water in a manner that mimics the natural hydrologic cycle and will provide a more sustainable approach to rainwater management than what has been the conventional grey infrastructure practice of routing run-off through a pipe to a receiving watercourse.

    Riparian buffers

    Submitted by admin on Wed, 03/04/2015 - 12:04
    Definition

    Planting and maintaining tree cover in near-stream areas can have multiple benefits including erosion and nutrient leaching control. They will also slow the stream velocity during high flow flood events and may have beneficial effects on stream temperature. Maintaining treed forest buffers during clearcutting can help minimizing the adverse effects of forestry on water quality and may have additional biodiversity benefits.
    - Based on Stella definitions, adapted by NWRM project experts and validated by the European Commission

    Sediment capture ponds

    Submitted by admin on Wed, 03/04/2015 - 12:04
    Definition

    Sediment capture ponds are widely used to "slow down" water being drained from boreal forests. The main function of the sediment capture ponds is to remove prevent pollution of receiving waters downstream of a forest by removing suspended sediment and associated pollutants.
    - Based on Stella definitions, adapted by NWRM project experts and validated by the European Commission

    Partners

    Logos of all partners of NWRM project